B.E. 301 - ENGINEERING MATHEMATICS II

Unit I

Unit II

Laplace Transform: Introduction of Laplace Transform, Laplace Transform of elementary functions, properties of Laplace Transform, Change of scale property, second shifting property, Laplace transform of the derivative, Inverse Laplace transform & its properties, Convolution theorem, Applications of L.T. to solve the ordinary differential equations

Unit III

Second Order linear differential equation with variable coefficients: Methods one integral is known, removal of first derivative, changing of independent variable and variation of parameter. Solution by Series Method

Unit IV

Linear and Non Linear partial differential equation of first order: Formulation of partial differential equations, solution of equation by direct integration, Lagrange’s Linear equation, charpit’s method. Linear partial differential equation of second and higher order: Linear homogeneous and Non homogeneous partial diff. equation of nth order with constant coefficients. Separation of variable method for the solution of wave and heat equations

Unit V

Vector Calculus: Differentiation of vectors, scalar and vector point function, geometrical meaning of Gradient, unit normal vector and directional derivative, physical interpretation of divergence and Curl. Line integral, surface integral and volume integral, Green’s, Stoke’s and Gauss divergence theorem

References

(i) Advanced Engineering Mathematics by Erwin Kreyszig, Wiley India
(ii) Higher Engineering Mathematics by BS Grewal, Khanna Publication
(iii) Advance Engineering Mathematics by D.G.Guffy
(iv) Mathematics for Engineers by S.Arumungam, SCITECH Publication
(v) Engineering Mathematics by S S Sastri. P.H.I.
IT 302 Discrete Structure

Unit-I
Set Theory, Relation, Function, Theorem Proving Techniques : Set Theory: Definition of sets, countable and uncountable sets, Venn Diagrams, proofs of some general identities on sets Relation: Definition, types of relation, composition of relations, Pictorial representation of relation, Equivalence relation, Partial ordering relation, Job-Scheduling problem Function: Definition, type of functions, one to one, into and onto function, inverse function, composition of functions, recursively defined functions, pigeonhole principle. Theorem proving Techniques: Mathematical induction, Proof by contradiction.

Unit-II
Algebraic Structures: Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, example and standard results, Rings and Fields: definition and standard results.

Unit-III
Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Normal Forms, Universal and existential quantifiers. Introduction to finite state machine Finite state machines as models of physical system equivalence machines, Finite state machines as language recognizers

Unit-IV
Graph Theory: Introduction and basic terminology of graphs, Planer graphs, Multigraphs and weighted graphs, Isomorphic graphs, Paths, Cycles and connectivity, Shortest path in weighted graph, Introduction to Eulerian paths and circuits, Hamiltonian paths and circuits, Graph coloring, chromatic number, Isomorphism and Homomorphism of graphs.

Unit V

References:
4. Lipschutz; Discrete mathematics (Schaum); TMH
5. Deo, Narsingh, “Graph Theory With application to Engineering and Computer. Science.”, PHI.
7. S k Sarkar “ Discrete Mathematics”, S. Chand Pub
IT 303 OOPS Methodology

Unit I
Introduction, Object Oriented Programming Concepts, Flow chart, Objects, Objects as software modules, Objects interaction, Classes, Method lookup, Hierarchies of classes, Inheritance, Polymorphism, Abstract classes.

Unit II
Identifying objects and classes, Representation of objects, Modeling, objects and classes, Relationships. Association between objects, aggregate components of objects. Storage Management : Memory allocation, Dynamic allocation.

Unit III
Object oriented programming languages, Class declarations, Object declarations, Mandatory profiles, Message sending, Association, Recursive association, Many to many association, Argument passing.

Unit IV
Inherited methods, Redefined methods, The protected interface, Abstract base classes, Public and protected properties, Private operations, Disinherance, Multiple inheritance.

Unit V
Study of C++ as object oriented programming language.

References:
1. Object oriented programming in C++ by Robert Lafore.
2. J. Rumbaugh, Object-Oriented Modeling and Design using UML, Pearson Education.
3. Balagurusamy; Object oriented programming with C++; TMH
4. Rajesh K Shukla, Object Oriented Programming by C++, Wiley, India
5. Kahate A; Object oriented analysis and design; TMH
6. Ken Barclay, Object oriented design with C++.
8. Josuttis, Object Oriented Programming With C++, Wiley, India

List of experiments (Expandable):
Programming assignments may be given to students so that they can better understand the concepts of object oriented programming such as objects, classes, inheritance, polymorphism etc.
IT 304 Electronics Devices & Circuits

Unit I
Semiconductor device, theory of P-N junction, temperature dependence and break down characteristics, junction capacitances. Zener diode, Varactor diode, PIN diode, LED, Photo diode, Transistors BJT, FET, MOSFET, types, working principal, characteristics, and region of operation, load line biasing method. Transistor as an amplifier, gain, bandwidth, frequency response, h-parameters equivalent, type of amplifier.

Unit II

Unit III
Switching characteristics of diode and transistor, turn ON, OFF time, reverse recovery time, transistor as switch, Multivibrators, Bistable, Monostable, Astable multivibrators. Clipers and clampers, Differential amplifier, calculation of differential, common mode gain and CMRR using h-parameters, Darlington pair, Boot strapping technique. Cascade and cascode amplifier.

Unit IV
Operational amplifier characteristics, slew rate, full power bandwidth, offset voltage, bias current, application ,inverting , non inverting amplifier , summer , averager , differentiator, integrator, differential amplifier, instrumentation amplifier, log and antilog amplifier, voltage to current and current to voltage converters, comparators Schmitt trigger, active filters, 555 timer and its application.

Unit V
Regulated power supplies., Series and shunt regulators, current limiting circuits, Introduction to IC voltage regulators, fixed and adjustable switching regulators, SMPS ,UPS

References:
2. Gayakwad; OP-amp and linear Integrated Circuits; Pearson Education
3. Salivahanan; Electronic devices and circuits; TMH
4. Salivahanan; Linear Integrated Circuits; TMH-
5. Milliman Grabel; Micro electronics , TMH
6. RobertBoylestad & Nashetsky; Electronics Devices and circuit Theory; Pearson Ed.

List of Experiments (Expandable):
1. Diode and Transistor characteristics
2. Transistor Applications (Amplifier and switching)
3. OP-Amp and its Applications
4. 555 timer and its Applications
IT 305 Data Structure & Algorithm

Unit I

UNIT II

UNIT III

UNIT IV
Internal and External sorting ,Insertion Sort, Bubble Sort, selection sort Quick Sort, Merge Sort, Heap Sort, Radix sort, Searching & Hashing: Sequential search, binary search, Hash Table, Hash Functions, Collision Resolution Strategies, Hash Table Implementation. Symbol Table, Static tree table, Dynamic Tree table.

Unit V

Reference:
4. Data Structures Trembley and Sorenson, TMH Publications
5. Pai; Data structure and algorithm; TMH
6. Introduction to Algorithm- Corman, AWL
7. Lipschutz; Data structure (Schaum); TMH

List of Experiments (expandable):
Programs in C relating to different theory units.
IT 306 Java Technology

UNIT-I
Basic Java Features - C++ Vs JAVA, JAVA virtual machine, Constant & Variables, Data Types, Class, Methods, Objects, Strings and Arrays, Type Casting, Operators, Precedence relations, Control Statements, Exception Handling, File and Streams, Visibility, Constructors, Operator and Methods Overloading, Static Members, Inheritance: Polymorphism, Abstract methods and Classes

UNIT-II

UNIT-III
Advance Java Features - Multithreading: Thread States, Priorities and Thread Scheduling, Life Cycle of a Thread, Thread Synchronization, Creating and Executing Threads, Multithreading with GUI, Monitors and Monitor Locks. Networking: Manipulating URLs, Reading a file on a Web Server, Socket programming, Security and the Network, RMI, Networking, Accessing Databases with JDBC: Relational Database, SQL, MySQL, Oracle

UNIT-IV

UNIT-V
Advance Web/Internet Programming (Overview): J2ME, J2EE, EJB, XML.

References:
1. Deitel & Deitel, "JAVA, How to Program"; PHI, Pearson.
2. E. Balaguruswamy, “Programming In Java”; TMH Publications
3. The Complete Reference: Herbert Schildt, TMH
6. Cay Horstmann, Big JAVA, Wiely India.

List of Program to be perform (Expandable)
1. Installation of J2SDK
2. Write a program to show Scope of Variables
3. Write a program to show Concept of CLASS in JAVA
4. Write a program to show Type Casting in JAVA
5. Write a program to show How Exception Handling is in JAVA
6. Write a Program to show Inheritance
7. Write a program to show Polymorphism
8. Write a program to show Access Specifiers (Public, Private, Protected) in JAVA
9. Write a program to show use and Advantages of CONTRUCTOR
10. Write a program to show Interfacing between two classes
11. Write a program to Add a Class to a Package
12. Write a program to show Life Cycle of a Thread
13. Write a program to demonstrate AWT.
14. Write a program to Hide a Class
15. Write a Program to show Data Base Connectivity Using JAVA
16. Write a Program to show “HELLO JAVA ” in Explorer using Applet
17. Write a Program to show Connectivity using JDBC
18. Write a program to demonstrate multithreading using Java.
19. Write a program to demonstrate applet life cycle.
20. Write a program to demonstrate concept of servlet.
IT-307 Self Study (Internal Assessment)

Objective of Self Study: is to induce the student to explore and read technical aspects of his area of interest / hobby or new topics suggested by faculty.

Evaluation will be done by assigned faculty based on report/seminar presentation and viva.
IT-308 Seminar / Group Discussion (Internal Assessment)

Objective of GD and seminar is to improve the MASS COMMUNICATION and CONVINCING/understanding skills of students and it is to give student an opportunity to exercise their rights to express themselves.

Evaluation will be done by assigned faculty based on group discussion and power point presentation.