Rajiv Gandhi Proudhvogiki Vishwavidyalaya, Bhopal

Scheme of Examination

Bachelor of Engineering B.E. (Common to all Disciplines)

For the candidates admitted in session July 2010-2011 and onward

Applicable to Branches: IT, EC, EE, EX, IP, IEM, CM, BT, and BM

Subject wise distribution of marks and corresponding credits

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Subject Name & Title</th>
<th>Maximum Marks Allotted</th>
<th>Credits Allotted Subject wise</th>
<th>Total Credits</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory Slot</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End Sem.</td>
<td>Mid Sem. MST (Two tests average)</td>
<td>Quiz, Assignment</td>
</tr>
<tr>
<td>1</td>
<td>BE-101</td>
<td>Engineering Chemistry</td>
<td></td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>BE-102</td>
<td>Engineering Mathematics -I</td>
<td></td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>BE-103</td>
<td>Communication Skills</td>
<td></td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>BE-104</td>
<td>Basic Electricals & Electronics Engg.</td>
<td></td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>BE-105</td>
<td>Engineering Graphics</td>
<td></td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>BE-106</td>
<td>Work Shop Practice</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

MST: Mid Semester Tests Taken at Least twice Per Semester

L: Lecture - T: Tutorial - P: Practical

w.e.f.-July-2010

Academic Session-2010-11
Rajiv Gandhi Proudhogiki Vishwavidyalaya, Bhopal

Scheme of Examination

Bachelor of Engineering B.E. (Common to all Disciplines)

For the candidates admitted in session July 2010-2011 and onward

Applicable to Branches: CS, EI/IC, CE, ME, FT, TX & AU

Subject wise distribution of marks and corresponding credits

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Subject Name & Title</th>
<th>Maximum Marks Allotted</th>
<th>Credits Allotted Subject wise</th>
<th>Total Credits</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory Slot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>End Sem.</td>
<td>Mid Sem. MST (Two tests average)</td>
<td>Quiz, Assignment</td>
<td>End Sem.</td>
</tr>
<tr>
<td>1</td>
<td>BE-201</td>
<td>Engineering Physics</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>BE-202</td>
<td>Energy, Environment, Ecology & Society</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>BE-203</td>
<td>Basic Mechanical Engg.</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>BE-204</td>
<td>Basic Civil Engg. & Engg. Mechanics</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>BE-205</td>
<td>Basic Computer Engg.</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>BE-206</td>
<td>Language Lab. & Seminars</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>350</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

MST: Mid Semester Tests Taken at Least twice Per Semester

L: Lecture - T: Tutorial - P: Practical

Rajiv Gandhi Proudhogiki Vishwavidyalaya, Bhopal

w.e.f.-July-2010
Academic Session-2010-11
Scheme of Examination
Bachelor of Engineering B.E. (Common to all Disciplines)
For the candidates admitted in session July 2010-2011 and onward

II-Semester Set-B:
Applicable to Branches : CS, EI/IC, CE, ME, FT, TX & AU

Subject wise distribution of marks and corresponding credits

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Subject Name & Title</th>
<th>Maximum Marks Allotted</th>
<th>Credits Allotted Subject wise</th>
<th>Total Credits</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory Slot</td>
<td>Practicall Slot</td>
<td></td>
<td>L: Lecture - T: Tutorial - P: Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>End Sem. Mid Sem. MST (Two tests average) Quiz Assignment End Sem. Term work</td>
<td>Lab work sessional Assignment / sessionals quiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>BE-101</td>
<td>Engineering Chemistry</td>
<td>70 20 10 30 10 10</td>
<td>3 1 2 06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BE-102</td>
<td>Engineering Mathematics -I</td>
<td>70 20 10</td>
<td>3 1 04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BE-103</td>
<td>Communication Skills</td>
<td>70 20 10 30 10 10</td>
<td>3 1 2 06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BE-104</td>
<td>Basic Electricals & Electronics Engg.</td>
<td>70 20 10 30 10 10</td>
<td>3 1 2 06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BE-105</td>
<td>Engineering Graphics</td>
<td>70 20 10 30 10 10</td>
<td>3 1 2 06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BE-106</td>
<td>Work Shop Practice</td>
<td>- - - 30 10 10</td>
<td>- - 2 02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 350 100 50 150 50 50 | 15 05 10 | 30 750 |

MST: Mid Semester Tests Taken at Least twice Per Semester

w.e.f.-July-2010
Rajiv Gandhi Proudhvyogiki Vishwavidyalaya, Bhopal

Scheme of Examination

Bachelor of Engineering B.E. (Common to all Disciplines)

For the candidates admitted in session July 2010-2011 and onward

Applicable to Branches: IT, EC, EE, EX, IP, IEM, CM, BT, and BM

Subject wise distribution of marks and corresponding credits

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Subject Name & Title</th>
<th>Maximum Marks Allotted</th>
<th>Credits Allotted</th>
<th>Total Credits</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory Slot</td>
<td>Practical Slot</td>
<td>Subject wise</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>End Sem.</td>
<td>Mid Sem. MST (Two tests average)</td>
<td>Quiz, Assignment</td>
<td>End Sem.</td>
</tr>
<tr>
<td>1</td>
<td>BE-201</td>
<td>Engineering Physics</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>BE-202</td>
<td>Energy, Environment, Ecology & Society</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BE-203</td>
<td>Basic Mechanical Engg.</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>BE-204</td>
<td>Basic Civil Engg. & Engg. Mechanics</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>BE-205</td>
<td>Basic Computer Engg.</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>BE-206</td>
<td>Language Lab. & Seminars</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>350</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

MST: Mid Semester Tests Taken at Least twice Per Semester

L: Lecture - T: Tutorial - P: Practical

w.e.f.-July-2010

Academic Session-2010-11
Course Content & Grade

<table>
<thead>
<tr>
<th>Branch</th>
<th>Subject Title</th>
<th>Subject Code</th>
<th>Grade for End Sem</th>
<th>CGPA at the end of every even semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E. Common</td>
<td>Engineering Chemistry</td>
<td>B.E.- 101</td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.“D”</td>
<td>Min.“D”</td>
</tr>
</tbody>
</table>

Unit I
WATER AND ITS INDUSTRIAL APPLICATIONS:
Sources, Impurities, Hardness & its units, Industrial water characteristics, softening of water by various methods (External & Internal treatment), Boiler trouble causes, effect & remedies, Characteristics of municipal water & its treatment, Numerical problems based on softening methods.

Unit II
FUELS & COMBUSTION:
Fossil fuels & classification, Calorific value, Determination of calorific value by Bomb calorimeter Proximate and Ultimate analysis of coal and their significance, calorific value Computation based on ultimate analysis data, Carbonization, Manufacturing of coke & recovery of by products. Knocking, relationship between' knocking & structure of hydrocarbon, improvement of anti knocking characteristics of IC engine fuels, Diesel engine fuels, Cetane number, combustion and it related numerical problems.

Unit III
A. LUBRICANTS:
Introduction, Mechanism of lubrication, Classification of lubricants, Properties and Testing of lubricating oils, Numerical problems based on testing methods.
B. CEMENT & REFRACTORIES:

Unit IV
HIGH-POLYMER:
Introduction, types and classification of polymerization, Reaction, Mechanism, Natural & Synthetic Rubber: Vulcanization of Rubber, Preparation, Properties & uses of the following- Polythene, PVC, PMMA, Teflon, Poly acrylonitrile, PVA, Nylon 6, Nylon 6/6, Terylene, Phenol formaldehyde, Urea - Formaldehyde Resin, Glyptal, Silicone Resin, Polyurethanes; Butyl Rubber, Neoprene, Buna N, Buna S.

Unit V
A. INSTRUMENTAL TECHNIQUES IN CHEMICAL ANALYSIS:
Introduction, Principle, Instrumentation and applications of IR, NMR,UV, Visible, Gas Chromatography, Lambert's and Beer's Law
B. WATER ANALYSIS TECHNIQUES:
Alkalinity, hardness (Complexo-metric), Chloride, Free chlorine, DO, BOD and COD, Numerical problems based on above techniques.

w.e.f.-July-2013

Academic Session-2013-14
Reference Books:

Engineering Chemistry Practical

NOTE: At least 10 of the following core experiments must be performed during the session.

1. Water Testing
 (i) Determination of Total hardness by Complexometric titration method.
 (ii) Determination of mixed alkalinity
 (a) OH⁻ & C0₃²⁻
 (b) CO₃²⁻ & HCO₃⁻
 (iii) Chloride ion estimation by Argentometric method.

2. Fuels & lubricant testing:
 (i) Flash & fire points determination by
 a) Pensky Martin Apparatus,
 b) Abel's Apparatus,
 c) Cleveland's open cup Apparatus.
 d) Calorific value by bomb calorimeter
 (ii) Viscosity and Viscosity index determination by
 a) Redwood viscometer No.1
 b) Redwood viscometer No.2
 (iii) Proximate analysis of coal
 a) Moisture content
 b) Ash content
 c) Volatile matter content
 c) Carbon residue
 (iv) Steam emulsification No & Anline point determination
 (v) Cloud and Pour point determination of lubricating oil

3. Alloy Analysis
 (i) Determination of percentage of Fe in an iron alloy by redox titration using N-Phenyl antranilic acid as internal indicator.
 (ii) Determination of Cu and or Cr in alloys by Iodometric Titration.
 (iii) Determination of % purity of Ferrous Ammonium Sulphate & Copper Sulphate.

w.e.f.-July-2013

Academic Session-2013-14
Course Content & Grade

<table>
<thead>
<tr>
<th>Branch</th>
<th>Subject Title</th>
<th>Subject Code</th>
<th>Grade for End Sem</th>
<th>CGPA at the end of every even semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E. Common</td>
<td>Engineering Mathematics - I</td>
<td>B.E.- 102</td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.“D”</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Unit I
DIFFERENTIAL CALCULUS:
Expansion of functions by Maclaurin’s and Taylor’s theorem. Partial differentiation, Euler’s theorem and its application in approximation and errors, Maxima and Minima of function of two variables, Curvature: Radius of curvature, centre of curvature.

Unit II
INTEGRAL CALCULUS:
Definite Integrals: Definite Integrals as a limit of a sum, its application in Summation of series, Beta and Gamma Functions, Double and Triple Integrals, Change of Order of Integration, Area, Volume and Surfaces using double and triple Integral.

Unit III
DIFFERENTIAL EQUATIONS:
Solution of Ordinary Differential Equation of first order and first degree for Exact differential Equations, Solution of Ordinary Differential Equation of first order and higher degree (solvable for p, x and y, Clairauts Equation), Linear Differential Equations with Constant Coefficients, Cauchy’s Homogeneous differential Equation, Simultaneous differential Equations, Method of Variation of Parameters.

Unit IV
MATRICES:
Rank, Solution of Simultaneous equation by elementary transformation, Consistency of System of Simultaneous Linear Equation, Eigen Values and Eigen Vectors, Cayley-Hamilton Theorem and its Application to find the inverse.

Unit V
Graph Theory: Graphs, Subgraphs, Degree and Distance, Tree, cycles and Network,

References:
(ii) Higher Engineering Mathematics by BS Grewal, Khanna Publication
(iii) Advance Engineering Mathematics by D.G.Guffy
(iv) Engineering Mathematics by S S Sastry. P.H.I.
(v) Mathematics for Engineers by S. Arumugam, SCITECH Publicaition
(vi) Advanced Engineering Mathematics by Erwin Kreyszig, Wiley India

w.e.f.-July-2010

Academic Session-2010-11
Course Content & Grade

<table>
<thead>
<tr>
<th>Branch</th>
<th>Subject Title</th>
<th>Subject Code</th>
<th>Grade for End Sem</th>
<th>CGPA at the end of every even semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E. Common</td>
<td>Communication Skills</td>
<td>B.E.- 103</td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.“D”</td>
<td>Min.“D”</td>
</tr>
</tbody>
</table>

Unit I - Languages and skills of communication
Linguistic techniques, Modern usages, Reading comprehension, English phonetic symbols/sings, Oral presentation, Audition Communication, Processes of Communication, Verbal and Non Verbal Communication, Barriers to Communication.

Unit II - Application of linguistic ability
Writing of definitions of Engineering terms, Objects, Processes and Principles (Listening) Topics of General Interest, Reproduction from business, daily life, travel, health, buying and selling, company structure, systems etc.

Unit III - Letter Writing:
Applications, Enquiry, Calling quotations, Tenders, Order and Complaint.

Unit IV
Precise Writing, Noting and drafting, Technical Description of simple engineering objects and processes (writing), Report writing, precise writing, Note writing, Slogan writing comment, Speech advertising.

Unit V

Communicative Language Lab. BE 103
MARKS : 50

Course objective : The language lab focuses on the production and practice of sounds of English through audio – visual aids and Computer software. It intends to enable the students to speak English correctly with confidence and intends to help them to overcome their inhibitions and self – consciousness while speaking in English.
Topics to be covered in the Language laboratory sessions:

1. Basic Grammar & Vocabulary (Synonyms /Antonyms, Analogies, sentence completion, correctly spelt words, idioms, proverbs, common errors).
2. Phonetic symbols and pronunciation.
3. Listening skills (Including Listening Comprehension).
4. Reading Skills (Including Reading Comprehension).
5. Writing Skills (Including structuring resume and cover letter).
6. Speaking Skills
7. Body Language
8. Oral Presentation: Preparation and delivery using audio – visual aids with stress on body language and voice modulation (Topic to be selected by the teacher.)

Final Assessment Should be based on Assignment, presentation and interview.

Reference Books:

1. Business Correspondence and Report Writing - By Sharma; TMH.
2. Living English Structure – By W.S. Allen; Longmans.
3. English Grammar – Ehrlich, Schaum Series; TMH.
4. Spoken English for India – By R.K. Bansal and IB Harrison Orient Longman.
5. New International Business English – by Joans and Alexander; OUP.
6. Effective Technical Communication – Rizvi; TMH.
Course Content & Grade

<table>
<thead>
<tr>
<th>Branch</th>
<th>Subject Title</th>
<th>Subject Code</th>
<th>Grade for End Sem</th>
<th>CGPA at the end of every even semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E. Common</td>
<td>Electrical & Electronics Engineering</td>
<td>B.E.- 104</td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.“D”</td>
<td>Min.“D”</td>
</tr>
</tbody>
</table>

Unit I

Electrical circuit analysis - Voltage and current sources, dependent and independent sources, source conversion, DC circuits analysis using mesh & nodal method, Thevenin’s & superposition theorem, star-delta transformation. 1-phase AC circuits under sinusoidal steady state, active, reactive and apparent power, physical meaning of reactive power, power factor, 3-phase balanced and unbalanced supply, star and delta connections.

Unit II

Unit III

Unit IV

Digital Electronics - Number systems used in digital electronics, decimal, binary, octal, hexadecimal, their complements, operation and conversion, floating point and signed numbers, Demorgan’s theorem, AND, OR, NOT, NOR, NAND, EX-NOR, EX-OR gates and their representation, truth table, half and full adder circuits, R-S flip flop, J-K flip flop.

Unit V

ELECTRONIC COMPONENTS AND CIRCUITS - Introduction to Semiconductors, Diodes, V-I characteristics, Bipolar junction transistors (BJT) and their working, introduction to CC, CB & CE transistor configurations, different configurations and modes of operation of BJT, DC biasing of BJT.
References:

1. Vincent Del Toro, Electrical Engineering Fundamentals, PHI Learning, II Edition

PROGRAMME : BE Electrical and Electronics Engineering
Course: BE104 Electrical and Electronics Engineering

List Of Experiments

1. Verifications of Thevenin’s Superposition theorem.
2. Study of Transformer, name plate rating, determination of ratio and polarity.
3. Determination of equivalent circuit parameters of a single phase transformer by O.C. and S.C. tests and estimation of voltage regulation and efficiency at various loading conditions and verification by load test.
4. Separation of resistance and inductance of choke coil.
5. Measurement of various line & phase quantities for a 3-phase circuit.
6. Identification of different Electronics components.
7. Observing input and output waveforms of rectifiers.
8. Transistor application as amplifier and switch.
9. Verification of truth table for various gates.
Course Content & Grade

<table>
<thead>
<tr>
<th>Branch</th>
<th>Subject Title</th>
<th>Subject Code</th>
<th>Grade for End Sem</th>
<th>CGPA at the end of every even semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E. Common</td>
<td>Engineering Graphics</td>
<td>B.E.- 105</td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.“D”</td>
<td>Min.“D”</td>
</tr>
</tbody>
</table>

Unit I

Scales: Representative factor, plain scales, diagonal scales, scale of chords.

Conic sections: Construction of ellipse, parabola, hyperbola by different methods; Normal and Tangent.

Special Curves: Cycloid, Epi-cycloid, Hypo-cycloid, Involutes, Archimedean and logarithmic spirals.

Unit II

Projection: Types of projection, orthographic projection, first and third angle projection,

Projection of points and lines: Line inclined to one plane, inclined with both the plane, True Length and True Inclination, Traces of straight lines.

Unit III

Projection of planes and solids: Projection of Planes like circle and polygons in different positions; Projection of polyhedrons like prisms, pyramids and solids of revolutions like cylinder, cones in different positions.

Unit IV

Section of Solids: Section of right solids by normal and inclined planes; Intersection of cylinders.

Development of Surfaces: Parallel line and radial - line method for right solids.

Unit V

Isometric Projections: Isometric scale, Isometric axes, Isometric Projection from orthographic drawing.

Computer Aided Drafting (CAD): Introduction, benefit, software’s basic commands of drafting entities like line, circle, polygon, polyhedron, cylinders; transformations and editing commands like move, rotate, mirror, array; solution of projection problems on CAD.

References

1. Visvesvaraya Tech. University; A Premier on Computer Aided Engg drawing; VTU Belgaum
2. Bhatt N.D.; Engineering Drawing, Charotar
3. Venugopal K.;Engineering Graphics; New Age
4. John KC; Engg. Graphics for Degree; PHI.
5. Gill P.S.; Engineering Drawing; kataria
6. Jeyopoovan T.; Engineering drawing & Graphics Using AutoCAD; Vikas
7. Agrawal and Agrawal; Engineering Drawing;TMH

w.e.f.-July-2010

Academic Session-2010-11
List of Practical:

Sketching and drawing of geometries and projections based on above syllabus

Term work: A min. of 30 hand drawn sketches (on size A4 graphic sketch Book) plus 5 CAD-printouts on size A4 sheets plus 10 sheets of size A2 or 6 sheets of size A1, (50% marks to be allotted for this record + 25% marks for attendance +25% marks for Teachers Assessmen

Practical Marks to be allotted based on written test and viva.

Note: To cover above syllabus, each Institute must have CAD software and a computer lab (6 to 12 hrs/month/student).
Course Content & Grade

<table>
<thead>
<tr>
<th>Branch</th>
<th>Subject Title</th>
<th>Subject Code</th>
<th>Grade for End Sem</th>
<th>CGPA at the end of every even semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E. Common</td>
<td>Work Shop Practice</td>
<td>B.E.- 106</td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Min.“D”</td>
</tr>
</tbody>
</table>

Unit I
Black Smithy Shop
Use of various smithy tools. Forging operations: Upsetting, Drawing down, Fullering, Swaging, Cutting down, Forge welding, Punching and drafting.
Suggested Jobs: Forging of chisel., forging of Screw Driver

Unit II
Carpentry Shop:
Suggested Jobs : Name Plate , Any of the Carpentry joint like mortise or tennon joint

Unit III
Fitting Shop:
Study and use of Measuring instruments, Engineer steel rule, Surface gauges caliper, Height gauges, feeler gauges, micro meter. Different types of files, File cuts, File grades, Use of surface plate, Surface gauges drilling tapping Fitting operations: Chipping filling, Drilling and tapping. Suggested Jobs: Preparation of job piece by making use of filling, sawing and chipping , drilling and tapping operations.

Unit IV
Foundry:
Pattern Making: Study of Pattern materials, pattern allowances and types of patterns. Core box and core print. Use and care of tools used for making wooden patterns.
Moulding:
Properties of good mould & Core sand, Composition of Green , Dry and Loam sand. Methods used to prepare simple green and bench and pit mould dry sand bench mould using single piece and split patterns.

Unit V

Reference Books:
1. Bawa HS; Workshop Practice, TMH
2. Rao PN; Manufacturing Technology- Vol.1 & 2, TMH
3. John KC; Mechanical workshop practice; PHI
5. Jain. R.K. Production Technology -

w.e.f.-July-2010

Academic Session-2010-11
Course Content & Grade

<table>
<thead>
<tr>
<th>Branch</th>
<th>Subject Title</th>
<th>Subject Code</th>
<th>Grade for End Sem</th>
<th>CGPA at the end of every even semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E. Common</td>
<td>Engineering Physics</td>
<td>B.E.- 201</td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min."D"</td>
<td>Min."D"</td>
</tr>
</tbody>
</table>

Unit I

Quantum Physics

Group and particle velocities & their relationship. Uncertainty principle with elementary proof and applications (determination of position of a particle by a microscope, non existence of electron in nucleus, diffraction of an electron beam by a single slit). Compton scattering. Wave function and its properties, energy and momentum operators, time dependent and time independent Schrödinger wave equation. Application of time independent Schrödinger wave equation to particle trapped in a one dimensional square potential well (derivation of energy eigen values and wave function).

Unit II

Wave Optics

Interference: Fresnel's biprism, Interference in thin films (due to reflected and transmitted light), interference from a wedge shaped thin film, Newton’s rings and Michelson’s interferometer experiments and their applications. Diffraction at single slit, double slit and n-slits (diffraction grating). Resolving power of grating and prism. Concept of polarized light, Brewster's laws, Double refraction, Nicol prism, quarter & half wave plate.

Unit III

Nuclear Physics

Nuclear liquid drop model (semi empirical mass formula), nuclear shell model, Linear Particle accelerators: Cyclotron, general description of Synchrotron, Synchrocyclotron, and Betatron. Geiger-Muller Counter, Motion of charged particles in crossed electric and magnetic fields. Uses of Bainbridge and Auston mass Spectrographs.

Unit IV

Solid State Physics

Qualitative discussion of Kronig Penny model (no derivation), Effective mass, Fermi-Dirac statistical distribution function, Fermi level for Intrinsic and Extrinsic Semiconductors. Zener diode, tunnel diode, photodiode, solar-cells, Hall effect.

Superconductivity: Meissner effect, Type I and Type II superconductors, Di-electric polarization, Complex permittivity, dielectric losses

UNIT V

Laser and Fiber Optics

Applications of lasers and optical fibers.

w.e.f.-July-2010

Academic Session-2010-11
Reference Books:
1. Optics By Ghatak, TMH
2. Engineering Physics- V. S. Yadava, TMH
3. Optics by Brijlal and Subhrainiyan.
5. Atomic and Nuclear physics by Brijlal and Subraminiyan.
6. Concepts of Modern Physics- Beiser, TMH
7. Solid State Physics by Kittel ,Wiley India
8. Fundamentals of Physics-Halliday, Wiley India

List of suggestive core experiments:
1. Biprism, Newton's Rings, Michelsons Interferometer.
3. G.M. Counter
4. Spectrometers-R.I., Wavelength, using prism and grating
5. Optical polarization based experiments: Brewster’s angle, polarimeter etc.
6. Measurements by LASER-Directionality, Numerical aperture, Distance etc.
7. Uses of Potentiometers and Bridges (Electrical)..<
8. Experiments connected with diodes and transistor.
10. To study Hall effect.
12. To find the width of s single slit by f He-Ne Laser.
13. To determine the numeral aperture (NA) of a Optical Fibre.
14. To determine plank’s constant.
15. Other conceptual experiments related to theory syllabus.
Course Content & Grade

<table>
<thead>
<tr>
<th>Branch</th>
<th>Subject Title</th>
<th>Subject Code</th>
<th>Grade for End Sem</th>
<th>CGPA at the end of every even semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.“D”</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Unit –I

Energy - Sources of Energy: Renewable & Non Renewable, Fossil fuel, Biomass
Geothermal, Hydrogen, Solar, Wind, hydal, nuclear sources.

Unit –II

Ecosystem – Segments of Environment: Atmosphere, hydrosphere, Lithosphere, biosphere.
Cycles in Ecosystem – Water, Carbon, Nitrogen. Biodiversity: Threats and conservation,

Unit –III

Air Pollution & Sound Pollution -
Sound Pollution: Causes, controlling measures, measurement of sound pollution (deciblage), Industrial and non – industrial.

Unit –IV

Water Pollution – Water Pollution: Pollutants in water, adverse effects. Treatment of Domestic & Industrial water effluent.

Soil Pollution – Soil Profile, Pollutants in soil, their adverse effects, controlling measures.

Unit –V

References:

4. Svakumar; Energy Environment & Ethics in society; TMH
5. AK De “Environmental Chemistry”; New Age Int. Publ.
7. Bala Krishnamoorthy; “Environmental management”; PHI
9. Miller GT JR; living in the Environment Thomson/cengage
10. Cunningham WP and MA; principles of Environment Sc; TMH

w.e.f.-July-2013

Academic Session-2013-14

17
UNIT- 1

Materials: Classification of engineering material, composition of cast iron and carbon steels on iron-carbon diagram and their mechanical properties; Alloy steel and their applications; stress-strain diagram, Hooks law and modulus of elasticity. Tensile, shear, hardness and fatigue testing of materials.

UNIT-2

Measurement: Temperature, pressure, velocity, flow, strain, force and torque measurement, concept of measurement error & uncertainly analysis, measurement by Vernier caliper, micrometer, dial gauges, slip gauges, sine-bar and combination set; introduction to lath, drilling, milling and shaping machines.

UNIT-3

Fluids: Fluid properties, pressure, density and viscosity; pressure variation with depth, static and kinetic energy; Bernauli’s equation for incompressible fluids, viscous and turbulent flow, working principle of fluid coupling, pumps, compressors, turbines, positive displacement machines and pneumatic machines. Hydraulic power & pumped storage plants for peak load management as compared to base load plants.

UNIT-4

Thermodynamics: First and second law of thermodynamics; steam properties, steam processes at constant pressure, volume, enthalpy & entropy, classification and working of boilers, efficiency & performance analysis, natural and induced draught, calculation of chimney height. Refrigeration, vapor absorption & compression cycles, coefficient of perform (COP), refrigerant properties & eco friendly refrigerants.

UNIT-5

Reciprocating Machines: Steam engines, hypothetical and actual indicator diagram; Carnot cycle and ideal efficiency; Otto and diesel cycles; working of two stroke & four stroke petrol & diesel IC engines
Reference Books:-
1. Narula; Material Science; TMH
2. Agrawal B & CM; Basic Mechanical Engg. Wiley India
3. Nag PK, Tripathi et al; Basic Mechanical Engg; TMH
4. Rajput; Basic Mechanical Engg;
5. Sawhney GS; Fundamentals of Mechanical Engg; PHI
6. Nakra and Chaudhary; Instrumentation & measurement; TMH
7. Nag PK; Engineering Thermodynamics; TMH
8. Ganesan; Combustion Engines; TMH

List of Suggestive core Experiments(Please Expand it)
1. Tensile testing of standard mild steel specimen.
2. Experiments on Bernoulli’s theorem.
3. Flow measurements by ventury and orifice meters.
4. Linear and angular measurement using, Vernier; micrometer, slip gauge, dial gauge and sine-bar.
5. Study of different types of boilers and mountings.
6. Experiment on mini-boiler (50 Kg/Hour)
7. To find COP of a refrigeration unit.
Course Content & Grade

<table>
<thead>
<tr>
<th>Branch</th>
<th>Subject Title</th>
<th>Subject Code</th>
<th>Grade for End Sem</th>
<th>CGPA at the end of every even semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E. Common</td>
<td>Basic Civil Engineering & Engineering Mechanics</td>
<td>B.E.- 204</td>
<td>Theory Practical</td>
<td>Min.“D” Min.“D” 5.0</td>
</tr>
</tbody>
</table>

Unit I

Building Materials & Construction
Stones, bricks, cement, lime, timber-types, properties, test & uses, laboratory tests concrete and mortar Materials: Workability, Strength properties of Concrete, Nominal proportion of Concrete preparation of concrete, compaction, curing. Elements of Building Construction, Foundations conventional spread footings, RCC footings, brick masonry walls, plastering and pointing, floors, roofs, Doors, windows, lintels, staircases – types and their suitability

Unit – II Surveying & Positioning:
Introduction to surveying Instruments – levels, theodolites, plane tables and related devices. Electronic surveying instruments etc. Measurement of distances – conventional and EDM methods, measurement of directions by different methods, measurement of elevations by different methods. Reciprocal leveling.

Unit –III Mapping & Sensing:
Mapping details and contouring, Profile Cross sectioning and measurement of areas, volumes, application of measurements in quantity computations, Survey stations, Introduction of remote sensing and its applications.

Engineering Mechanics

Unit - IV

Unit – V

Support Reactions, Shear force and bending moment Diagram for Cantilever & simply supported beam with concentrated, distributed load and Couple.
Reference Books:
1. S. Ramamrutam & R. Narayanan; Basic Civil Engineering, Dhanpat Rai Pub.
4. Shesa Prakash and Mogaeer; Elements of Civil Engg & Engg. Mechanics; PHI
9. Global Positioning System Principles and application- Gopi, TMH

List of suggestive core Experiments:
Students are expected to perform minimum ten experiments from the list suggested below by preferably selecting experiments from each unit of syllabus.

S.No. Title
1. To perform traverse surveying with prismatic compass, check for local attraction and determine corrected bearings and to balance the traverse by Bowditch’s rule.
2. To perform leveling exercise by height of instrument of Rise and fall method.
3. To measure horizontal and vertical angles in the field by using Theodolite.
4. To determine (a) normal consistency (b) Initial and Final Setting time of a cement Sample.
5. To determine the workability of fresh concrete of given proportions by slump test or compaction factor test.
6. To determine the Compressive Strength of brick.
7. To determine particle size distribution and fineness modulus of course and fine Aggregate.
8. To verify the law of Triangle of forces and Lami’s theorem.
9. To verify the law of parallelogram of forces.
10. To verify law of polygon of forces.
11. To find the support reactions of a given truss and verify analytically.
12. To determine support reaction and shear force at a given section of a simply Supported beam and verify in analytically using parallel beam apparatus.
13. To determine the moment of inertia of fly wheel by falling weight method.
14. To verify bending moment at a given section of a simply supported beam.
UNIT I

Computer: Definition, Classification, Organization i.e. CPU, register, Bus architecture, Instruction set, Memory & Storage Systems, I/O Devices, and System & Application Software. Computer Application in e-Business, Bio-Informatics, health Care, Remote Sensing & GIS, Meteorology and Climatology, Computer Gaming, Multimedia and Animation etc.

Operating System: Definition, Function, Types, Management of File, Process & Memory. Introduction to MS word, MS powerpoint, MS Excel

UNIT II

Introduction to C++: Character Set, Tokens, Precedence and Associativity, Program Structure, Data Types, Variables, Operators, Expressions, Statements and control structures, I/O operations, Array, Functions.

UNIT III

Object & Classes, Scope Resolution Operator, Constructors & Destructors, Friend Functions, Inheritance, Polymorphism, Overloading Functions & Operators, Types of Inheritance, Virtual functions.

Introduction to Data Structures.

UNIT IV

Computer Security Basics: Introduction to viruses, worms, malware, Trojans, Spyware and Anti-Spyware Software, Different types of attacks like Money Laundering, Information Theft, Cyber Pornography, Email spoofing, Denial of Service (DoS), Cyber Stalking, Logic bombs, Hacking Spamming, Cyber Defamation, pharming Security measures Firewall, Computer Ethics & Good Practices, Introduction of Cyber Laws about Internet Fraud, Good Computer Security Habits,

UNIT V

Data base Management System: Introduction, File oriented approach and Database approach, Data Models, Architecture of Database System, Data independence, Data dictionary, DBA, Primary Key, Data definition language and Manipulation Languages.

Cloud computing: definition, cloud infrastructure, cloud segments or service delivery models (IaaS, PaaS and SaaS), cloud deployment models/ types of cloud (public, private, community and hybrid clouds), Pros and Cons of cloud computing
List of Experiment

01. Study and practice of Internal & External DOS commands.
02. Study and practice of Basic linux Commands – ls, cp, mv, rm, chmod, kill, ps etc.
03. Study and Practice of MS windows – Folder related operations, My-Computer, window explorer, Control Panel,
04. Creation and editing of Text files using MS- word.
05. Creation and operating of spreadsheet using MS-Excel.
06. Creation and editing power-point slides using MS- power point
08. WAP to illustrate Arithmetic expressions
09. WAP to illustrate Arrays.
10. WAP to illustrate functions.
11. WAP to illustrate constructor & Destructor
12. WAP to illustrate Object and classes.
13. WAP to illustrate Operator overloading
14. WAP to illustrate Function overloading
15. WAP to illustrate Derived classes & Inheritance
16. WAP to insert and delete and element from the Stack
17. WAP to insert and delete and element from the Queue
18. WAP to insert and delete and element from the Linked List

Recommended Text Books:
1. Fundamentals of Computers : E Balagurusamy, TMH
2. Basic Computer Engineering: Silakari and Shukla, Wiley India
3. Fundamentals of Computers : V Rajaraman, PHI
4. Information Technology Principles and Application: Ajoy Kumar Ray & Tinku Acharya PHI.

Recommended Reference Books:
1. Introduction of Computers : Peter Norton, TMH
2. Object Oriented Programming with C++ :E.Balagurusamy, TMH
3. Object Oriented Programming in C++: Rajesh K.Shukla, Wiley India
5. Operating Systems – Silberschatz and Galvin - Wiley India
6. Computer Networks:Andrew Tananbaum, PHI
7. Data Base Management Systems, Korth, TMH
8. Cloud Computing, Kumar, Wiley India
Course Content & Grade

<table>
<thead>
<tr>
<th>Branch</th>
<th>Subject Title</th>
<th>Subject Code</th>
<th>Grade for End Sem</th>
<th>CGPA at the end of every even semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E. Common</td>
<td>Communicative Language</td>
<td>B.E.- 206</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Objective:

This course intends to impart practical training in the use of English Language for Communicative purposes and aims to develop students’ personality through Language Lab.

Topics to be covered in the Language laboratory sessions:

1. Introducing oneself, family, social roles, personal image design, building relationships, body language, concept of time and space.
2. Public Speaking and oral skills with emphasis on conversational practice, Role plays, extempore speech, JAM (Just a minute sessions), describing objects and situations, giving directions, debate, telephonic etiquette.
3. Reading Comprehension: Intensive reading skills, rapid reading, and reading aloud (Reading material to be selected by the teacher).
4. Translation from English to Hindi and vice versa.
5. Oral Presentation: preparation and delivery (Topic to be selected by the teacher.)

Assessment Criterion:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Presentation</td>
<td>10</td>
</tr>
<tr>
<td>Assignment</td>
<td>20</td>
</tr>
<tr>
<td>Viva Voice</td>
<td>20</td>
</tr>
</tbody>
</table>